## Mark scheme - Alcohols

| Question |  | Answer/Indicative content | Marks | Guidance |
| :---: | :---: | :---: | :---: | :---: |
| 1 | i | Reagents <br> $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ AND acid <br> AND reflux $\checkmark$ <br> Equation $\begin{aligned} & \mathrm{HO}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{OH}+4[\mathrm{O}] \rightarrow \\ & \mathrm{HOOC}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{COOH}+2 \mathrm{H}_{2} \mathrm{O} \end{aligned}$ <br> [O] AND $\mathrm{H}_{2} \mathrm{O} \checkmark$ <br> Correctly balanced equation $\checkmark$ | $\begin{gathered} 3 \\ (\mathrm{AO} 1.1) \\ (\mathrm{AO} 2.5) \\ (\mathrm{AO} 2.6) \end{gathered}$ | ALLOW $\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} \mathrm{OR} \mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ <br> ALLOW $\mathrm{H}_{2} \mathrm{SO}_{4}$ OR HCl OR H ${ }^{+}$ <br> ALLOW words. e.g. 'acidified dichromate’ <br> ALLOW a small slip in formula for dichromate e.g $\mathrm{KCr}_{2} \mathrm{O}_{7}$, <br> Examiner's Comments <br> Many candidates did not correctly balance this equation or missed water as a product entirely. |
|  | ii |   <br> Diagram showing correct dipole charges on each end of one hydrogen bond between a water molecule and a diacid $\checkmark$ <br> Hydrogen bond between one lone pair on O atom in one of the molecules and the H atom of another AND <br> Hydrogen bonding stated or labelled on diagram | $\begin{gathered} 2 \\ (\mathrm{AO} 2.1 \times 2 \\ ) \end{gathered}$ | ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous <br> DO NOT ALLOW $\delta+$ on H atoms of $\mathrm{CH}_{2}$ group <br> ALLOW H-bond for hydrogen bond <br> ALLOW H bond between $\mathrm{C}=\mathrm{O}$ and $\mathrm{H}_{2} \mathrm{O}$, i.e. <br> IF diagram is not labelled, ALLOW hydrogen bond/ H bond from text <br> Examiner's Comments <br> Candidates who answered this question well had clear, labelled diagrams. Too often, labels, dipoles and lone pairs were missing. |
|  |  | Total | 5 |  |
| 2 |  | C, E AND F $\sqrt{ } \checkmark$ <br> Three correct alcohols $\rightarrow 2$ marks <br> Two correct alcohols $\rightarrow 1$ mark | $\begin{gathered} 2 \\ (\mathrm{AO} 1.1 \times 1 \\ ) \\ (\mathrm{AO} 2.1 \times 1 \\ ) \end{gathered}$ | If >2 alcohols are shown lose $\mathbf{1}$ mark for each incorrect response <br> Examiner's Comments <br> Generally this was well answered. However, some candidates only gave two responses where three were required, presumably because it was worth two marks. |
|  |  | Total | 2 |  |



[^0]1 (AO1.2)

## Examiner's Comments

Part 25(a)(i) discriminated extremely well and rewarded well-prepared candidates. Most candidates recognised that $B$ is a tertiary alcohol and will not react with acidified dichromate. The structure from A was often shown as an aldehyde rather than a carboxylic acid. It was also common for candidates to replace the OH group of A with the carboxyl COOH group, gaining a carbon atom in the chain in the process. The ketone oxidation product from C proved to be easier.

Part 25(a)(ii) proved to be difficult. Candidates need to be careful in identifying the longest carbon chain to derive the stem of an organic name. Many candidates thought that alcohol C was a branched propanol, with 1-methylpropan-1-ol being seen very often instead of the



|  |  |  |  | more successful with compounds $\mathbf{G}$ and $\mathbf{H}$, although these were sometimes shown in reverse order. A significant number of candidates drew structures containing $\mathrm{C}=\mathrm{C}$ or $\mathrm{C}=\mathrm{O}$ bonds in which the carbon atom had five bonds. Candidates should check drawing of organic structures carefully to ensure that all carbon atoms have four bonds. <br> There were some good responses for part (ii), with many clearly shown and correct systematic names. |
| :---: | :---: | :---: | :---: | :---: |
|  | ii | 2-methylpropan-1-ol $\checkmark$ <br> Both numbers required | 1 | IGNORE absence of hyphen or use of dots or commas as separators |
|  |  | Total | 4 |  |
| 5 |  | Heptane compared to hexane heptane (has a longer chain so) has more points of contact / more surface interaction (between molecules) $\checkmark$ <br> heptane has stronger/more induced dipole(-dipole) interactions $\checkmark$ <br> Pentan-1-ol compared to heptane and/or hexane <br> pentan-1-ol has hydrogen bonds that are strong(er than induced dipole-dipole interactions) <br> OR <br> (alcohols have) hydrogen bonds and induced dipole(-dipole) interactions/London forces $\checkmark$ <br> Energy required to break forces <br> More energy is required to break induced dipole(dipole) interactions in heptane than hexane OR <br> More energy is required to break hydrogen bonds $\checkmark$ | 4 | ANNOTATE WITH TICKS AND CROSSES <br> ALLOW ORA throughout <br> ALLOW heptane has more electrons <br> IGNORE IDID <br> ALLOW stronger/more London forces IGNORE van der Waals' forces/VDW for induced dipole-dipole interactions (ambiguous as this term refers to both permanent dipoledipole interactions and induced dipole-dipole interactions) <br> IGNORE 'pentan-1-ol can form hydrogen bonds with water' <br> ALLOW 'more energy to break intermolecular forces' if intermolecular forces are not stated. <br> IGNORE it is harder to break the intermolecular forces no reference to energy) <br> IGNORE more energy needed to separate molecules IGNORE more energy is needed to break bonds <br> Examiner's Comments <br> This question was answered well with most candidates scoring three or four marks. Examiners were impressed by the number of responses that accurately referred to induced dipole-dipole interactions or London forces rather than van der Waals' forces, which is ambiguous. Some responses lacked detail, as demonstrated in Exemplar 10. <br> Exemplar 10 |




|  |  |  |  | This type of response was seen frequently by examiners. The candidate has drawn the correct structure of the haloalkane formed and scores the first mark. However, the response fails to recognise that the reaction occurs under acidic conditions and omits the sulfuric acid from the equation. |
| :---: | :---: | :---: | :---: | :---: |
|  | b | Correct organic product $\checkmark$ <br> Rest of equation $\checkmark$ | 2 | ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous <br> ALLOW any vertical bond to the tertiary OH group e.g. ALLOW <br> Examiner's Comments <br> This question required candidates to apply their knowledge of the oxidation of alcohols to complete the equation for the complete oxidation of compound $B$. This question discriminated well. Many candidates correctly identified the organic product but only the higher ability candidates could complete the equation. A common error was to omit water as a product of the reaction. |
|  |  | Total | 8 |  |
| 7 | i | Please refer to the marking instructions on page 5 of this mark scheme for guidance on how to mark this question. <br> Level 3 (5-6 marks) <br> Correctly labelled diagram of reflux apparatus that works, with no safety problems <br> AND <br> An appreciation of most of the purification steps required to gain a pure sample <br> There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. <br> Level 2 (3-4 marks) <br> Labelled diagram of apparatus (either reflux or distillation) but with safety/procedural problems OR clear diagram of reflux apparatus without labelling AND <br> Some details of further purification steps | 6 | Indicative scientific points may include: <br> Apparatus set up for reflux: <br> - round-bottom/pear shaped flask <br> - heat source <br> - condenser <br> Detail: water flow in condenser bottom to top; open system. <br> Purification <br> Use of a separating funnel to separate organic and <br> - aqueous layers <br> Detail: Collect lower organic layer density greater <br> . Drying with an anhydrous salt, Detail: e.g. $\mathrm{MgSO}_{4}, \mathrm{CaCl}_{2}$, etc. <br> . Redistillation <br> Detail: Collect fraction distilling at $102^{\circ} \mathrm{C}$. |

There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence.

## Level 1 (1-2 marks)

Diagram of apparatus (reflux OR separation OR
distillation) drawn with no labelling OR labelled diagram with significant safety/procedural

## AND / OR

Few or imprecise details about further purification stages

There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant.

## 0 marks

No response or no response worthy of credit.

## Examiner's Comments

Candidates were not prepared to answer this type of question and the diagrams were hard to give credit to. Many had significant safety implications such as open beakers of butan-1-ol being heated by a Bunsen burner. Most mis-read the question and just outlined the method for purification and struggled to recall the practical details. Very few candidates mentioned the use of anhydrous salts, referring instead to 'boiling off' the water.

## Exemplar 4



This candidate was credited 4 marks for this level 2 answer. Although they have drawn distillation apparatus instead of reflux, they have considered the boiling point of the product, detailed using a separating funnel, a

|  |  |  |  | drying agent and that the lower organic layer would be drawn off first. |
| :---: | :---: | :---: | :---: | :---: |
|  | ii | FIRST, CHECK THE ANSWER ON ANSWER <br> LINE <br> IF answer = 12.6 ( $\mathbf{g}$ ) award 2 marks <br> - $n(1$-bromobutane $)=0.150 \times \frac{61.4}{100}=0.0921(\mathrm{~mol})$ <br> Mass 1 -bromobutane $=0.0921 \times 136.9=12.6$ <br> (g) $\checkmark$ | 2 | Common errors: $33.4(0.150 \times 100 / 61.4=0.244 \times 136.9)$ <br> 1 mark <br> ALLOW ECF for incorrect moles or incorrect $M_{r}$ of 1bromobutane (provided answer is to 3 SF ) <br> DO NOT ALLOW 6.82 (using $M_{r}$ of butan-1-ol) <br> ALLOW calculation using masses, e.g. <br> Theoretical $=0.150 \times 136.9=20.535(\mathrm{~g}) \checkmark$ (ALLOW 20.535 rounded back to 20.5) Actual mass $=20.535 \times \frac{61.4}{100}=12.6(\mathrm{~g})^{v}$ <br> (20.5 also gives 12.6) <br> Examiner's Comments <br> This question was well answered, but a significant number of candidates incorrectly used the Mr of butan-1ol when calculating the mass of 1-bromobutane. |
|  |  | Total | 8 |  |
| 8 |  | * Please refer to the marking instruction point 10 for guidance on how to mark this question. <br> (Level 3) <br> Applies knowledge of elimination reactions to provide the correct names and structures of all three alkenes. <br> AND <br> Full, detailed explanation of formation of both types of isomers linked to the reaction, with clear understanding of both types of isomerism. <br> The explanations show a well-developed line of reasoning which is clear and logically structured. The information presented is relevant to the compounds drawn / named. <br> (Level 2) <br> Applies knowledge of elimination reactions to provide the correct name and structure for pent-1ene. <br> AND <br> Correct structures of stereoisomers of pent-2-ene but full names missing or incorrect. <br> AND <br> Explanation of formation of at least one type of | 6 | Indicative scientific points may include: <br> - the elimination can produce a double bond in either the 1-or the 2-position (through combination of the hydroxyl group with a hydrogen from either the 1st or the 3rd carbon) <br> - this leads to the formation of structural isomers (pent-1-ene and pent-2-ene) <br> - pent-2-ene exhibits stereoisomerism / E/Z isomerism / cis-trans isomerism because it has two different groups attached to each carbon atom <br> - there are two possible isomers of pent-2-ene and three in total. <br> Names and structures of alkenes <br> pent-1-ene <br> Z or cis-pent-2-ene <br> E or trans-pent-2-ene |


|  |  | isomers in some detail. <br> The explanations show a line of reasoning presented with some structure. The information presented is in the most-part relevant to the compounds drawn / named. <br> (3-4 marks) <br> (Level 1) <br> Applies knowledge of elimination reactions to name and draw the structures of organic products. Either name OR structure should be correct for two compounds. <br> AND <br> Attempts to explain formation of one type of isomer. The information about isomerism is basic and communicated in an unstructured way. The relationship to the compounds drawn / named may not be clear. <br> (0 marks) <br> No response or no response worthy of credit. |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Total | 6 |  |
| 9 | a | Displayed formulae of $\mathrm{CH}_{3} \mathrm{OH}$ and $\mathrm{H}_{2} \mathrm{O}$ <br> AND <br> C-O AND O-H polar bonds shown on $\mathrm{CH}_{3} \mathrm{OH}$ molecule with $\delta+$ and $\delta$ - <br> AND <br> Both $\mathrm{O}-\mathrm{H}$ polar bonds shown on $\mathrm{H}_{2} \mathrm{O}$ molecule with $\delta+$ and $\delta$ - <br> Two lone pairs shown on both oxygen atoms AND <br> Hydrogen bond / H-bond labelled and in the correct position between the H on water and the oxygen lone pair on methanol $\checkmark$ | 2 |  <br> IGNORE $\delta+$ shown on other H atoms <br> ALLOW hydrogen bond between the H on methanol $(\mathrm{OH})$ and the oxygen lone pair on water <br> Examiner's Comment: <br> Candidates did not cope well with the requirement to produce a hydrogen bonding diagram that was expected to match the content of all four of the bullet points listed in the question. Perhaps candidates did not read the question carefully enough but some diagrams did not include displayed formulae, dipoles were often missing from the methanol molecule, lone pairs were absent from oxygen atoms and the hydrogen bond was marked in an incorrect position. This resulted in a low scoring question for a diagram that had produced much higher scores when asked on papers from the legacy specification. |
|  | b | Please refer to the marking instructions on page 5 of the mark scheme for guidance on how to mark this question. <br> Level 3 (5-6 marks) | 6 | Indicative scientific points <br> 1. Oxidation reaction forming aldehyde |


|  |  | A comprehensive explanation with all three scientific points covered thoroughly. <br> There is a well-developed description with a logical structure including correct chemical equations and an explanation with a clear line of reasoning including a fully labelled diagram. <br> Level 2 (3-4 marks) <br> The candidate attempts all three scientific points but explanations are incomplete. <br> OR <br> Explains two scientific points thoroughly with no omissions. <br> The description has a line of reasoning presented with some structure and includes correct structural formulae and an accurate diagram of a distillation apparatus. <br> Level 1 (1-2 marks) <br> A simple explanation based on at least two of the main scientific points <br> OR <br> The candidate explains one scientific point thoroughly with few omissions. <br> The description may be communicated in an unstructured way but it includes the correct reagents and conditions for the formation of the aldehyde. <br> There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. <br> 0 marks-No response or no response worthy of credit. |  | - acid / $\mathrm{H}+$ AND dichromate $/ \mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ <br> - heat AND distillation <br> - organic product is butanal / $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHO}$ <br> - $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}+[\mathrm{O}] \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHO}$ $+\mathrm{H} 2 \mathrm{O}$ <br> 2. Oxidation reaction forming carboxylic acid <br> - acid / H+ AND dichromate $/ \mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ <br> - heat under reflux <br> - organic product is butanoic acid / $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$ <br> - $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}+2[\mathrm{O}] \rightarrow$ $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O}$ <br> 3. Distillation <br> - diagram of apparatus with condenser <br> - condenser has water flow <br> - collection of organic product <br> - product is separated to prevent further oxidation (to carboxylic acid) <br> Examiner's Comment: <br> A very wide range of responses was seen in the second question marked using a level of response mark scheme and a greater proportion of candidates were able to access the highest level in this question. Diagrams of a distillation apparatus were often disappointing and many poor answers failed to identify the oxidation products. A Level 1 response usually named the oxidising agent and included a crude diagram of a distillation apparatus. Diagrams in Level two responses often included more detail with a condenser cooled by water flow and an indication of where butanal can be collected. A Level three response was expected to include balanced equations for the oxidation reactions. |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Total | 8 |  |
| 10 | a | $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}+7 \mathrm{O}_{2} \longrightarrow 5 \mathrm{CO}_{2}+5 \mathrm{H}_{2} \mathrm{O} \checkmark$ | 1 | ALLOW multiples $\text { e.g. } 2 \mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}+14 \mathrm{O}_{2} \longrightarrow 10 \mathrm{CO}_{2}+10 \mathrm{H}_{2} \mathrm{O}$ <br> ALLOW any equation involving an unsaturated alcohol |


|  |  |  |  | with correct balancing <br> e.g. $\begin{aligned} & \mathrm{C}_{5} \mathrm{H}_{8} \mathrm{O}+6.5 \mathrm{O}_{2} \longrightarrow 5 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O} \\ & \mathrm{C}_{5} \mathrm{H}_{6} \mathrm{O}+6 \mathrm{O}_{2} \longrightarrow 5 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O} \\ & \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{O}+5.5 \mathrm{O}_{2} \longrightarrow 5 \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \\ & \mathrm{C}_{5} \mathrm{H}_{2} \mathrm{O}+5 \mathrm{O}_{2} \longrightarrow 5 \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \end{aligned}$ <br> IGNORE state symbols <br> Examiner Comments <br> The more able candidates were able to balance this combustion equation. Those who failed to be awarded the mark either used the molecular formula of a saturated alcohol or did not consider the presence of the oxygen atom in the alcohol when balancing the equation. |
| :---: | :---: | :---: | :---: | :---: |
| b | i | Diagram showing a water molecule and an ethanol molecule with at least one $\mathrm{H}^{\delta+}$ and one $\mathrm{O}^{\delta-}$ on BOTH molecules $\checkmark$ <br> Hydrogen bond between one lone pair on O atom in one of the molecules and the H atom of another. <br> AND <br> Hydrogen bonding stated or labelled on diagram $\checkmark$ e.g. <br> Hydrogen bond | 2 | ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous <br> DO NOT ALLOW $\delta+$ on H atoms of alkyl group <br> DO NOT ALLOW any marks for a diagram containing $\mathrm{O}_{2} \mathrm{H}$ <br> If more than one hydrogen bond is shown they must all be correct to award the mark. <br> Examiner Comments <br> The examiners were surprised that more of the candidates did not achieve both marks on a question that many would have experienced before from legacy past papers. Candidates often failed to include dipoles and lone pairs even though this was indicated in the stem of the question. Candidates should recognise the involvement of the lone pair in any hydrogen bonds drawn. Where candidates gave more than one hydrogen bond in their diagrams they had to be correct for a mark to be awarded. |
|  | ii | Hexane-1,6-diol has more OH groups (than hexan-1-ol) <br> AND <br> (hexane-1,6-diol) forms more hydrogen bonds with water $\sqrt{ }$ | 1 | Statements MUST be comparative <br> e.g. hexane-1,6-diol has two -OH groups and hexan-1-ol has one -OH group <br> ALLOW hydroxyl or hydroxy <br> DO NOT ALLOW hydroxide/OH ${ }^{-}$ <br> ALLOW ORA <br> Examiner Comments <br> The best answers here stated that that hexane-1,6-diol had more OH groups than hexan-1-ol and so more hydrogen bonds could be formed with water molecules. Weaker answers did not compare the two compounds simply stating that hexan-1,6-diol had two OH groups or that it formed two hydrogen bonds with water. Candidates who did include a comparison frequently failed to state that solubility was due to hydrogen bonds being formed with water. |


|  | c |  <br> Equations <br> $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}+[\mathrm{O}] \longrightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHO}+\mathrm{H}_{2} \mathrm{O}$ <br> $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}+2[\mathrm{O}] \longrightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}+$ $\mathrm{H}_{2} \mathrm{O}$ <br> Reaction conditions <br> Distillation to produce aldehyde/ $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHO}$ <br> AND <br> Reflux to produce carboxylic <br> acid $/ \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH} \checkmark$ | 5 | ANNOTATE WITH TICKS AND CROSSES <br> Use of any primary alcohol containing 3,5 or more carbons can be awarded up to 4 marks. <br> ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous <br> IGNORE names <br> DO NOT ALLOW $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COH}$ for the structure of the aldehyde. <br> ALLOW $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}$ for the structure of the carboxylic acid. <br> ALLOW marks for structures from equations as long as unambiguous. <br> ALLOW molecular formulae in equations <br> e.g. $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}+[\mathrm{O}] \longrightarrow \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}+\mathrm{H}_{2} \mathrm{O}$ <br> $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}+2[\mathrm{O}] \longrightarrow \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O}$ <br> $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}+[\mathrm{O}] \longrightarrow \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{CHO}+\mathrm{H}_{2} \mathrm{O}$ <br> $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}+2[\mathrm{O}] \longrightarrow \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{CO}_{2} \mathrm{H}+\mathrm{H}_{2} \mathrm{O}$ <br> IGNORE incorrect structures in equations $\text { i.e. } \mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}+[\mathrm{O}] \longrightarrow \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{COH}+\mathrm{H}_{2} \mathrm{O}$ <br> scores equation mark <br> Conditions must be linked to aldehyde/carboxylic acid or correct products. <br> Conditions may be written above arrow of equation. <br> Examiner Comments <br> A very well answered question. Candidates had obviously been well prepared as even the weakest candidates gained a number of marks here. The most common mark lost was a failure to include $\mathrm{H}_{2} \mathrm{O}$ in the balanced equations. In the preparation of the carboxylic acid, a number of Candidates balanced the equation with $2 \mathrm{H}_{2} \mathrm{O}$. |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Total | 9 |  |
| 11 | a | Alcohols have hydrogen bonds (and van der Waals' forces) $\checkmark$ <br> Hydrogen bonds are stronger than van der Waals' forces (in alkanes) $\checkmark$ | 2 | ANNOTATE ANSWER WITH TICKS AND CROSSES <br> ALLOW reference to specific compounds e.g. comparing methane and methanol <br> Second marking point requires BOTH types of intermolecular forces in response i.e comparison of hydrogen bonds AND van der Waals is essential <br> DO NOT ALLOW the second mark for a comparison of van der Waals' and hydrogen bonds between alcohols and water <br> ALLOW more energy required to break hydrogen bonds than van der Waals' forces <br> ALLOW it is harder to overcome the hydrogen bonds |



(12


|  |  |  |  | with most candidates being to express this to gain the mark available. |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Total | 5 |  |
| 14 |  |   | 2 | ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous <br> ALLOW any vertical bond to OH , <br> DO NOT ALLOW OH- <br> Examiner's Comments <br> Many candidates found it difficult to draw the structures for the two alcohols that could be dehydrated to produce compound $A$. This was surprising as it was a simple task to add water across the double bond of compound "A" resulting in two branched chained isomers. The most common incorrect answers were pentan-1-ol and pentan-2-ol, although some candidates shortened the chain length resulting in compounds containing only four carbon atoms. |
|  |  | Total | 2 |  |
| 15 | a | QWC: Evidence of the IR absorption at $1720\left(\mathrm{~cm}^{-1}\right)$ for presence of $\mathrm{C}=\mathrm{O} /$ carbonyl group $\checkmark$ <br> QWC: No carboxylic acid OH absorption in IR OR no peak between $2500-3300 \mathrm{~cm}^{-1}$ <br> AND <br> so $\mathbf{J}$ is a secondary alcohol $\mathbf{O R}$ so $\mathbf{K}$ is a ketone $\checkmark$ <br> Compound K <br> Structure of a carbonyl compound that could be obtained from alcohol J V | 6 | ANNOTATE ANSWER WITH TICKS AND CROSSES ETC <br> LOOK ON THE SPECTRUM for labelled peaks which can be given credit BOTH IR at $\sim 1720\left(\mathrm{~cm}^{-1}\right)$ AND C=O required ALLOW ranges from Data Sheet, i.e. C=O within range 1640-1750 cm ${ }^{-1}$; <br> IGNORE any reference to C-O absorption For structures of $\mathbf{J}$ and $\mathbf{K}$, <br> ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above <br> IGNORE any names given for $\mathbf{J}$ and $\mathbf{K}$ <br> ALLOW 1 mark for the structure of an alcohol with the molecular formula $\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O}$ <br> DO NOT ALLOW pentan-1-ol (primary and unbranched) or 2-methylbutan-2-ol (branched but tertiary) <br> DO NOT ALLOW any marks for $\mathbf{J}$ and $\mathbf{K}$ if more than one structure is given for $\mathbf{J}$ <br> Note: 'sticks' in either J and / or K will lose only 1 mark |



ANNOTATE ANSWER WITH TICKS AND CROSSES



|  |  |  |  | Examiner's Comments <br> This question required candidates to interpret the reaction scheme and suggest an intermediate compound that could be formed from 2-methylbut-2-ene that could be also hydrolysed to give the diol shown. The most able candidates demonstrated their understanding of this scheme and often suggested the correct dihalo compound. Most candidate favoured the dibromo compound however some chose to show the dichloro or diiodo compound. All of these responses received credit. <br> A large proportion of structures suggested were obtainable from 2-methylbut-2-ene but could not be hydrolysed. These included the products of hydrogenation e.g. 2-methylbutane, or hydration e.g. 2-methylbutan-2-ol. <br> Consequently only the most able candidates achieved a mark in part (b), as this was essentially dependant on part (a). |
| :---: | :---: | :---: | :---: | :---: |
| c | i | Steam AND acid catalyst $\checkmark$ | 1 | ALLOW $\mathrm{H}^{+}$/ named acid / $\mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{H}_{3} \mathrm{PO}_{4}$ <br> ALLOW $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ <br> ALLOW water only if a temperature of $100^{\circ} \mathrm{C}$ or above is quoted. <br> IGNORE any temperature given with steam <br> IGNORE pressure <br> Examiner's Comments <br> One would expect the majority of candidates to do well in a question which required them to state the reagents and conditions required for the hydration of alkenes; however this was not the case. The most able candidates provided accurate responses which referred to both steam and the acid catalyst, which was often shown to be $\mathrm{H}_{3} \mathrm{PO}_{4}$. <br> Other candidates stated only one of the two required responses and it was common to see the acid catalyst stated alongside a temperature and pressure but with no reference to steam. Some candidates stated the reagent as $\mathrm{H}_{2} \mathrm{O}$ instead of steam and this was allowed if accompanied by a temperature of over $100^{\circ} \mathrm{C}$. <br> Candidates should be encouraged to learn reagents and conditions required for organic reactions. |
|  | ii | (compounds or molecules) having the same molecular formula but different structural formulae $\checkmark$ | 1 | ALLOW different structure OR different displayed formula OR different skeletal formula for structure <br> Same formula is not sufficient Different arrangement of atoms is not sufficient <br> Examiner's Comments |


|  |  |  | The majority of candidates were able to explain the term structural isomers. |
| :---: | :---: | :---: | :---: |
|  | iii | 2 | ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above <br> ALLOW any vertical bond to OH DO NOT ALLOW OH- <br> Examiner's Comments <br> Many candidates found this question difficult and a large number of candidates showed structures of alcohols with the molecular formula $\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O}$, but that could not be formed from 2- methylbut-2-ene. Examples of these incorrect responses included 2-methylbutan-1-ol, pentan-1- ol, pentan-2-ol and pentan-3-ol. Only the most able could show the structures of both alcohols produced by the hydration of 2-methlybut-2-ene. <br> Candidates should be reminded to check that any structures they suggest are consistent with the context of the question. |
|  | Does not contain OH group(s) <br> OR does not contain hydroxyl group(s) <br> OR is not an alcohol $\checkmark$ <br> Does not form hydrogen bonds with water $\checkmark$ | 2 | ALLOW ORA throughout DO NOT ALLOW OH- (ions) / hydroxide (ions) <br> 'Does not form hydrogen bonds' is not sufficient <br> Examiner's Comments <br> The majority of candidates were able to recognise that the key to the solubility of the isomers in water is that they contain the OH group whereas 2-methylbut-2-ene does not. Most candidates scored the second mark by accurately explaining that the OH group could form hydrogen bonds with water. |
| d | Reagents: Acid / $\mathrm{H}^{+}$and (potassium or sodium) dichromate $/ \mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ seen once $\sqrt{ }$ <br> Observations: Orange to Green OR Orange to Blue $\sqrt{ }$ <br> Distillation / Distil produces aldehyde / $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}: \checkmark$ $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}+[\mathrm{O}] \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}+\mathrm{H}_{2} \mathrm{O} \checkmark$ <br> Reflux (of propan-1-ol) produces carboxylic acid / $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH} \checkmark$ | 6 | ANNOTATE ANSWER WITH TICKS AND CROSSES ETC <br> ALLOW $\mathrm{H}_{2} \mathrm{SO}_{4}$ and $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ <br> ALLOW correct displayed formula OR correct structural formula OR skeletal formula OR a mixture of the above DO NOT ALLOW molecular formulae <br> ALLOW $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}$ for propan-1-ol in equations <br> DO NOT ALLOW $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COH}$ for aldehyde <br> IGNORE further oxidation of aldehyde ALLOW $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}$ for carboxylic acid <br> Examiner's Comments |



|  |
| :--- | :--- | :--- | :--- |


|  | iii |  | 1 | ALLOW correct structural OR skeletal OR displayed formula OR mixture of the above <br> IGNORE names |
| :---: | :---: | :---: | :---: | :---: |
|  | v | * Please refer to the marking instruction point 10 for guidance on how to mark this question. <br> Level 3 (5-6 marks) <br> Outlines full details of how a pure sample of $\mathbf{B}$ is obtained from the reaction mixture. <br> AND <br> Correctly calculates mass of B <br> - Purification steps are clear, in the correct order, using appropriate scientific terms. <br> - Calculation shows all relevant steps and mass given to 3 significant figures. <br> Level 2 (3-4 marks) <br> Some details of how a sample of $\mathbf{B}$ is obtained from the reaction mixture. <br> AND <br> Attempts a calculation which is mostly correct. <br> - Purification steps lack detail, e.g. no drying agent or no explanation of separation, or only some scientific terms used. <br> - Calculation can be followed but unclear. <br> Level 1 (1-2 marks) <br> Few or imprecise details of how a sample of $\mathbf{B}$ is obtained from the reaction mixture. <br> AND <br> Attempts to calculate the mass of $B$ using mole approach but makes little progress with only 1 step correct. <br> - Purification step is unclear with few scientific terms and little detail, e.g. just 'separate the layers and dry'. <br> - Calculation is difficult to follow and lacking clarity <br> 0 marks <br> No response or no response worthy of credit. | 6 | Indicative scientific points, with bulleted elements, may include: <br> 1. Purification <br> - Use of a separating funnel to separate organic and aqueous layers <br> - Drying with an anhydrous salt, e.g. $\mathrm{MgSO}_{4}$, $\mathrm{CaC} / 2$, etc. <br> - Redistillation <br> Incorrect purification method is NOT worthy of credit. <br> 2. Mass of $B$ obtained <br> - $n(\mathbf{A})$ used $=\frac{9.26}{102}=0.0908(\mathrm{~mol})$ <br> $=$ theoretical $n(\mathbf{B})$ <br> - Actual $n(\mathbf{B})$ obtained $=n(0.908) \times \frac{75}{100}=0.0681(\mathrm{~mol})$ <br> - mass $\mathbf{B}=84 \times 0.0681=5.72 \mathbf{g}$ <br> CHECK for extent of errors by ECF <br> Alternative correct calculation may calculate the mass of $\mathbf{B}$ as $0.0908 \times 84=$ <br> 7.63 g , followed by $7.63 \times \frac{75}{100}=5.72 \mathrm{~g}$ <br> Calculation must attempt to calculate $n(\boldsymbol{A})$ in mol. Simply finding $75 \%$ of the initial mass of alcohol A, 9.26, is NOT worthy of credit. |
|  |  | Total | 11 |  |
| 20 |  | * Please refer to the marking instruction point 10 for guidance on how to mark this question. <br> (Level 3) <br> Candidate provides a method for identifying the alcohols <br> AND provides all supporting evidence from IR | 6 | Indicative scientific points may include <br> Identification of alcohols <br> Based on recognition of alcohols as primary, secondary and tertiary (stated or implied by method). Basic procedure involves reflux followed by use of IR to identify different oxidation products. |




[^0]:    ii butan-2-ol $\checkmark$

